Skip to main content

From Single-Molecule Precursors to Hybrid ZnS Nanostructures

Buy Article:

$105.00 plus tax (Refund Policy)

A series of coordination compounds containing [Zn(amine)]2+ cationic complexes and alkyldithiocarbamates (RR′dtc), as counter anions, are reported here: [Zn(amine)x][RR′ dtc]2, where amine = ethylenediamine (en), diethylenetriamine (dien), 1,2-diaminopropane (dap) and, R,R′ = ethyl (Et); butyl (Bu) and methyl (Me), hexyl (Hex). Hybrid nanoplates composed of hexagonal-ZnS nanoparticles and organic components were obtained after solution phase thermolysis of such precursors in oleylamine. These hybrid materials show quantum confinement effects in their optical spectra and convert into cubic-ZnS after further thermal treatment.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2010-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more