Skip to main content

The Effect of the Addition of Carbon Nanotubes in the Hydrothermal Synthesis and in the Thermal Phase Stability of Nanozirconia

Buy Article:

$105.00 plus tax (Refund Policy)

The yttria partially stabilized zirconia is a very attractive material for orthopaedic applications. It exhibits excellent biocompatibility, high fracture toughness, high strength and low wear rates. But case studies show that delayed failure can occur in vivo due to crack propagation. Carbon nanotubes could avoid the slow crack propagation and enhance the toughness of the ceramic material used for prostheses fabrication. In this work, X-ray diffraction has been used to study the influence of the addition of MWCNT on the hydrothermal synthesis of tetragonal zirconia nanoparticles and on the phase stability of the CNT-nanozirconia nanocomposite with the temperature. First, the influence of the processing variables on the hydrothermal synthesis has been studied. The theoretical mathematical models that relate the percentage of tetragonal zirconia nanocrystals and the relative crystallinity with the processing variables in the range of analyzed values have been obtained. The values that give the maximum percentage and crystallinity of tetragonal phase in the studied range have been established. No significant differences were observed in the crystalline phases obtained when adding MWCNT during the synthesis. Nanozirconia partially coated MWCNT synthesized under the optimized parameters were added to commercially available nanozirconia particles and their influence in the phase stability of the zirconia with the temperature was studied by XRD. It was concluded that the addition of the carbon nanotubes delays both the monoclinic phase decomposition and the grain growth.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2010-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more