Skip to main content

Lying-Down Metallic Single-Walled Carbon Nanotubes as Efficient Linkers for Metalloprotein-Based Nanodevices

Buy Article:

$113.00 plus tax (Refund Policy)


Metalloproteins recently emerged as good candidates for signal transduction in bionanodevices, but the feasibility of such novel devices is strongly connected to the achievement of an efficient charge transport between single metalloproteins and metal electrodes. In this work, we propose the use of metallic single-walled carbon nanotubes as efficient linkers between metalloproteins and metal surfaces. By means of a conductive atomic force microscopy investigation, we compare the conduction across single yeast cytochrome c molecules covalently bound both to bare gold and to functionalized metallic single-walled carbon nanotubes lying on gold. At comparable forces applied by the microscope tip (i.e., comparable physical contact), the measured current is higher when a metallic single-walled carbon nanotubes is in between the metalloprotein and the gold surface. The analysis of the single molecule current responses by means of a non-resonant tunneling transport model suggests that the increasing in the conduction is due both to the strong electronic conjugation existing at the nanotubes/gold interface and to the participation of the nanotube electronic bands to the charge transport.


Document Type: Research Article


Publication date: 2010-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more