Skip to main content

Density Functional Study of the Oxidation of Small Neutral and Charged Silver Clusters

Buy Article:

$105.00 plus tax (Refund Policy)

We have studied the energetic and structural stability of the interaction of molecular oxygen with small neutral, anionic and cationic silver clusters, Agn (3 ≤ n ≤ 8). The calculations have been carried out using a linear combination of atomic Gaussian-type orbitals within the density functional theory as it is implemented in the demon-ks3.5 code. The O2 molecule has been placed in different positions surrounding the cluster, in order to increase the configurational space of the structural minima. We have found that the oxidized cation and neutral clusters undergo a 2D–3D structural transition even before than the nonoxidized counterparts. Moreover, our results show that the adsorption energies on the cationic and neutral silver oxide clusters manifest an odd-even alternation pattern. Likewise, the average magnetic moment of the O2 radical in the charged and neutral silver environment tends to be greater than the charged and neutral bare diatomic oxygen molecule.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2010-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more