Skip to main content

Effect of TiO2 Nanoparticles on the Interface in the PET-Rubber Composites

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Usually, ceramic powders (SiO2, ZnO) are used as fillers for enhancing rubber mechanical strength. Poly-ethylene terephthalate (PET)-rubber nanocomposites were prepared by compression molding using titanium oxide (TiO2) nanoparticles as low content fillers (<2% wt). The interface properties of PET-rubber nanocomposites were studied before and after keeping the samples under UV-radiation for a week. UV-radiation has interesting potential for the photochemical modification of polymers and TiO2. The influence of UV radiation on the properties of the interface polymer-TiO2 nanoparticles was evaluated. The impact of nanoparticle aggregates on the nanometer to micrometer organization of PET-rubber composites was studied with Atomic Force Microscopy (AFM). The interface properties were explained by measuring the contact angles and surface tensions. The interactions between components of nanocomposites were investigated with Fourier Transform-Infrared (FTIR) and the effects of TiO2 nanoparticle on the interfaces and composites crystalline structure were evaluated by X-ray diffraction (XRD). The results proved that the TiO2 nanoparticles, in different weight percentages, did not alter the nanocomposites crystallinity or the average crystallites size, but improve the interface properties.

Keywords: CONTACT ANGLES; INTERFACE; MORPHOLOGY; NANOCOMPOSITES; NANOPARTICLE; SURFACE TENSIONS; UV IRRADIATION; VISIBLE LIGHT

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2010.1440

Publication date: April 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2010/00000010/00000004/art00035
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more