Skip to main content

Magnetocaloric Effect in Magnetic Nanoparticle Systems: How to Choose the Best Magnetic Material?

Buy Article:

$113.00 plus tax (Refund Policy)

Magnetic nanoparticles with controlled magnetocaloric properties are a good candidate to lower the temperature of nanosized systems: they are easy to manipulate and to distribute into different geometries, as wires or planes. Using a Monte Carlo technique we study the entropy change and refrigerant capacity of an assembly of fine magnetic particles as a function of their anisotropy and magnetization, key-parameters of the magnetic behavior of the system. We focus our attention on the anisotropy energy/dipolar energy ratio by means of the related parameter c0 = 2K/M2S, where K is the anisotropy constant and MS is the saturation magnetization of the nanoparticles. Making to vary the value of c0 parameter by choosing different K-MS combinations, allows us to discuss how the magnetocaloric response of an assembly of magnetic nanoparticles may be tuned by an appropriate choice of the magnetic material composition.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2010-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more