Skip to main content

Enhanced Fluorescence from CdTe Quantum Dots Self-Assembled on the Surface of Silver Nanoparticles

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

This paper presents an investigation on the fluorescent properties of semiconductor CdTe quantum dots (QDs) self-assembled on the surface of PVP (polyvinylpyrrolidone)-capped silver nanoparticles (NPs) by the ligand field effect. A significant 2.5-fold enhancement in the integrated fluorescence intensities, red shift of fluorescence peak, and obvious decrease of lifetime were observed in the CdTe QDs assembled on the Ag NPs in comparison with the pure CdTe QDs. The fluorescence enhancement factor and red shift were found to depend on the Ag NP concentration. The fluorescence enhancement was attributed to a highly localized electromagnetic field on the Ag NPs generated by the surface plasma and the change in the surface trap state of the CdTe QDs originating from plasma oscillations in the Ag NPs. It is first proposed that the surface passivation of CdTe QDs is also an important factor for metal-enhanced fluorescence. The surface defects of CdTe QDs can be modified by the Cd–O coordination interaction between the CdTe QDs and PVP molecules, which will cause the trap state density and luminescence lifetime to decrease. The surface passivation of CdTe QDs can also improve fluorescence quantum yield and lead to the red shift of the fluorescence peak. Compared with previous reports, the occurrence of the self-assembly of CdTe QDs on the surface of PVP-capped Ag NPs is fairly simple and easy. From a practical point of view, the combination of CdTe QDs with Ag NPs may lead to the fluorescence enhancement, which could be utilized in a variety of chemical and biological detection applications.

Keywords: CDTE; ENHANCED FLUORESCENCE; FLUORESCENCE DECAY; QUANTUM DOTS (QDS); SILVER NANOPARTICLES (NPS)

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2010.2080

Publication date: March 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2010/00000010/00000003/art00103
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more