Skip to main content

Entanglement Generation Using Silicon Photonic Wire Waveguide

Buy Article:

$105.00 plus tax (Refund Policy)

This paper reviews recent progress on telecom-band entangled photon-pair sources based on spontaneous four-wave mixing (SFWM) in a silicon photonic wire waveguide. Thanks to the large third order nonlinearity of nano-scale silicon waveguides, we can generate photon pairs efficiently. Moreover, the use of silicon waveguides enable us to avoid the noise photons caused by spontaneous Raman scattering, which has been a serious problem with entanglement sources based on SFWM in dispersion shifted fiber. We successfully demonstrated high-purity time-bin and polarization entanglement generation using 1-cm long silicon waveguides.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 March 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more