Skip to main content

Modified Effective Dielectric Function for Metallic Granular Composites with High Percolation Threshold

Buy Article:

$105.00 plus tax (Refund Policy)

We propose the effective dielectric function theory of metal granular composites modified with the metal particle size. The modified theory is used to explain the electrical conductivity, resonant plasmon absorption, and large nonlinear absorption of Au-TiO2 granular composite films with high-density metallic particles and a high electric percolation threshold. It is revealed that the decreasing metal particle size leads to an increasing percolation threshold and large enhancement of optical nonlinearity of the composites.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: EFFECTIVE DIELECTRIC FUNCTION THEORY; ELECTRIC PERCOLATION THRESHOLD; OPTICAL NONLINEARITY

Document Type: Research Article

Publication date: 2010-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more