Skip to main content

Bridging the Gap Between Nanophotonic Waveguide Circuits and Single Mode Optical Fibers Using Diffractive Grating Structures

Buy Article:

$105.00 plus tax (Refund Policy)

In this paper, the use of diffractive grating structures to efficiently interface between a single mode fiber and a high index contrast waveguide circuit is outlined. We show that high index contrast grating structures allow for broadband and high efficiency coupling. Since no polished facet is required on the photonic integrated circuit to interface with the optical fiber, fiber-to-chip grating couplers enable wafer-scale testing, reducing the cost for testing large scale integrated optical circuits. We show that two-dimensional grating structures can solve the problem of the huge polarization dependence of high index contrast photonic integrated circuits. Finally, an optical probe is presented, which allows testing individual components of a photonic integrated circuit, analogous to the electrical probes used in micro-electronics.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: FIBER INTERFACE; SILICON PHOTONICS

Document Type: Review Article

Publication date: 2010-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more