Skip to main content

Quantum and Nanoscale Modelling of Exciton Dynamics in Polymeric Systems

Buy Article:

$107.14 + tax (Refund Policy)

One of the factors that limit the efficiency of polymer-based optoelectronic devices, such as photovoltaic solar cells and light emitting diodes, is the exciton diffusion within the polymeric network. Due to the amorphous nature the of polymeric materials, the diffusion of excitons is limited by the energetic and spatial disorder in such systems, which is a consequence not only of the chemical structure of the polymer but also from its morphology at nanoscale. To get a deep understanding on how such effects influence exciton dynamics we performed a quantum molecular dynamics simulations to determine the energetic disorder within the polymer system, and Monte Carlo simulations to study exciton diffusion in three-dimensional (3D) polymer networks that present both spatial and energetic disorder at nanometre scale. Our results show clearly that exciton diffusion in poly(pphenylenevinylene) (PPV) occurs preferentially in the direction parallel to the electrodes surface for a polymer-based optoelectronic devices with the orientation of the conjugated strands similar to those obtained by the spin-coating technique and the decay of such excitons occurs preferentially in longer strands which allow us to get insight on exciton behaviour in polymeric systems that are not possible to be obtained directly from the experiments.

Keywords: ATOMISTIC MODELLING; DIFFUSION COEFFICIENT; DIFFUSION LENGTH; EXCITONS; NANOSCALE MODELLING; PPV

Document Type: Research Article

Publication date: 01 February 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content