Skip to main content

Development of a Nanocomposite System by Combining an Organic Dyad 1-(4-chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-Propenone with Semiconductor TiO2 Nanoparticles

Buy Article:

$105.00 plus tax (Refund Policy)

Steady state and time resolved spectroscopic measurements on an organic dyad, 1-(4-chlorophenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone, where the donor 1-methoxynaphthalene is connected with the acceptor p-chloroacetophenone by an unsaturated olefinic bond, in presence of TiO2 nanoparticles were made at the ambient temperature. Time resolved fluorescence measurements reveal that the rate parameters associated with charge separation, k CS, within the dyad increases whereas charge recombination rate reduces when the surrounding medium is changed from chloroform to TiO2 nanoparticles. The observed results indicate that the dyad being combined with TiO2 nanoparticles may form organic–inorganic nanocomposite systems useful for developing light energy conversion devices.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2010-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more