If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Preparation and Characterization of CdSe/ZnS Quantum Dots Encapsulated in Poly(ethylene glycol)-b-Poly(D,L-lactide) Micelle Nanoparticles

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The final goal of this study is to develop multi-functional organic/inorganic hybrid nanoparticles, which can be utilized as biomedical imaging probes and drug delivery carriers. As an initial step toward this goal, we encapsulated CdSe/ZnS quantum dots (QDs) into poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) micelles using a solid dispersion method. The size and fluorescent intensity of QDs encapsulated in PEG-PLA micelles depended on the amount of incorporated QDs. For example, when the amount of QDs increased from 0.1 to 1.0 μg, the mean diameter increased from 24.2 ± 6.0 to 211.2 ± 6.5 nm and the fluorescent intensity changed from 10.2 ± 1.0 to 469.9 ± 15.6 (RFU). Stability studies showed that the size and zeta-potential (ZP) of QDs encapsulated in PEG-PLA micelles (QEMs) did not change significantly in response to a change in pH conditions or under a 10% serum condition. We also tested the cytotoxicity and cellular uptake of the QEMs. The viability of HeLa cells treated with micelles for 24 h was 80∼100% in various concentration ranges of micelles. Confocal laser scanning microscopic images showed that the QEMs penetrated into the cells, particularly into the cytosolic compartments. Our results suggest that the QEMs may be a promising multi-functional nanocarrier for biomedical imaging and drug delivery.

Keywords: DRUG DELIVERY CARRIER; IMAGING; MICELLE; PEG-PLA; QUANTUM DOTS

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2010.1736

Publication date: January 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more