Skip to main content

The Fluorinated (10, 0) Boron Nitride Nanotube: A Computational Nuclear Magnetic Resonance and Nuclear Quadrupole Resonance Study

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Quantum chemical calculations at the level of density functional theory (DFT) were carried out to investigate the influence of fluorination boron and nitrogen nuclear magnetic resonance (NMR) and also nuclear quadrupole resonance (NQR) parameters in the (10, 0) single-wall boron nitride nanotube (SWBNNT). To achieve this aim three models of (10, 0) boron nitride nanotubes (BNNTs), raw and two F-attached (exohedral and endohedral) derivatives were studied. The results of calculations showed that while the boron atom chemically bonded to F atom has the largest chemical shielding isotropy (CSI); it has the smallest quadrupole coupling constant (CQ) value among the other boron nuclei.

Keywords: BORON NITRIDE NANOTUBE; DENSITY FUNCTIONAL THEORY; FLUORINATED BNNT; NUCLEAR MAGNETIC RESONANCE; NUCLEAR QUADRUPOLE RESONANCE

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2010.1592

Publication date: 2010-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more