Skip to main content

Single-Photon and Two-Photon Cellular Imagings of Gold Nanorods and Dyes

Buy Article:

$105.00 plus tax (Refund Policy)

A method to obtain the expressions of gold nanorods (GNRs) and dye molecules simultaneously is proposed for the single-photon and two-photon cellular imagings by using laser scanning confocal microscopy. For our experiment, GNRs with an average aspect ratio of 2.14 were synthesized using electrochemical method, and the peak of absorption spectrum of GNRs is at 600 nm. The human breast cancer cell lines (MDA-MB-435) were studied by incubating them with GNRs for 20 hours and then staining their nuclei with dye molecules-Prodium Iodide (PI). For the single-photon imaging, different CW lasers (458, 488, 514, 561, and 633 nm) were used individually to irradiate the samples. By adjusting the ranges of two bandpass filters for the detection, the scattered light from the GNRs due to surface plasmon resonance (SPR) and the fluorescence from PI can be induced simultaneously but be detected separately without crosstalk. Furthermore, the two cellular images can be merged together to become a composited cellular image. The TEM image shows that several clusters of GNRs internalized by the vesicles are distributed sparsely inside the cytoplasm, due to the endocytosis of the cells. The aggregation of GNRs causes SPR band broadened. Therefore strong scattered light from GNRs can almost be induced by different-wavelength lasers irradiating. However, the expression of PI can only be detected by the exciting lasers with a wavelength shorter than 600 nm. For the two-photon imaging of these cells internalizing GNRs, an ultrafast Ti:Sapphire IR-laser (800 nm) was used for irradiating the sample, and two bandpass filters were also adjusted to distinguish the photoluminescence of GNRs from the fluorescence of PI.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CELLULAR IMAGING; DYE FLUORESCENCE; ENDOCYTOSIS; GOLD NANORODS; LASER SCANNING CONFOCAL MICROSCOPY; SCATTERING; SURFACE PLASMON RESONANCE; TWO-PHOTON

Document Type: Research Article

Publication date: 2010-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more