Skip to main content

Fabrication of Alumina-Based Metal Nanocomposites by Pressureless Sintering and Their Mechanical Properties

Buy Article:

$113.00 plus tax (Refund Policy)


The processing conditions to prepare nano-sized Cu and Mo dispersed Al2O3 (Al2O3/Cu and Al2O3/Mo) composites by pressureless sintering were explored. The composite powders of Al2O3/Cu and Al2O3/Mo were obtained by the hydrogen reduction of Al2O3/CuO and Al2O3/MoO3 powder mixtures and consolidated by pressureless sintering using infrared heating furnace with a heating rate of 200 °C/min. SEM and TEM analyses for the composite showed that the nano-sized metal particles were well distributed and situated on the grain boundaries of the Al2O3 matrix. The nanocomposites, sintered at 1300 to 1500 °C for 4 min, showed the relative density of above 90%. Maximum hardness of 16.1 GPa was obtained in Al2O3/Cu nanocomposites with sintering additive of 1 wt% MgO. The sintered nanocomposites exhibited the enhanced fracture toughness of above 4.5 MPa·m1/2, compared with monolithic Al2O3. The mechanical properties were discussed in terms of observed microstructural characteristics.


Document Type: Research Article


Publication date: January 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more