Skip to main content

Crystallization of Amorphous Fe90Zr10 Under Ball Milling

Buy Article:

$105.00 plus tax (Refund Policy)

The present study deals with structural transformations induced by high-energy ball-milling of an amorphous Fe90Zr10 alloy prepared by melt-spinning. The amorphous melt-spun ribbons were found to undergo crystallization into BCC α-Fe(Zr) nanocrystallites under high-energy ball milling. The decomposition degree of the amorphous phase increased with increasing milling time and intensity. Our results suggest that the observed crystallization is a deformation-induced process rather than a thermally induced one.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: AMORPHOUS MATERIALS; BALL MILLING; CRYSTALLIZATION

Document Type: Research Article

Publication date: 2010-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more