Skip to main content

Synthesis of High Thermally-Stable Mesoporous Alumina Particles

Buy Article:

$113.00 plus tax (Refund Policy)


The mesoporous undoped and Si-doped alumina were prepared with an ultrasonic spray process, and found to have well-developed mesopore structures and large surface areas. The mesoporous Si-doped alumina has a high thermal stability up to 1473 K. Its surface area and pore volume were found to slowly decrease with increasing temperature. Mesoporous undoped alumina is transformed to γ-alumina at 1073 K, whereas the amorphous nature of the pore walls of the Si-doped alumina is maintained up to 1073 K. When heat treatment was carried out at 1473 K for 2 h, the mesopore-networks of the undoped alumina collapsed, and then all the pore walls were converted into the α-alumina phase. In contrast, the mesoporosity of the Si-doped alumina persisted during heat treatment, and its pore walls were transformed to γ-alumina. The decreases in the pore volume of the undoped alumina at 1073 K and 1473 K were found to be 36% and 99% respectively, but for the Si-doped alumina were only 24% and 36% respectively. The surface area of the undoped alumina at 1473 K was found to be 11 m2/g but that of the Si-doped samples at the same temperature is higher than 100 m2/g. Thus this mesoporous Si-doped alumina can be used as a catalytic support in reactions at high temperatures.


Document Type: Research Article


Publication date: January 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more