Skip to main content

Nanohybrids of Ultrathin Titania Nanosheets and Zinc Oxide Nanoparticles by an Electrostatic Interaction

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

We synthesized ultrathin titania nanosheets and zinc oxide nanoparticles, and formed the nanohybrids of them by an electrostatic interaction. The titania nanosheets were prepared by soft chemical processes: intercalation, exfoliation, and reassembly. The zinc oxide nanoparticles were prepared by the sol–gel method. And two nano-scale inorganic materials were hybridized to form nanohybrids using an electrostatic interaction as a driving force. According to the X-ray diffraction pattern and high-resolution transmission electron microscope images, it is revealed that the nanohybrid of the titania nanosheets and zinc oxide nanoparticles has a house of cards structure in which zinc oxide nanoparticles are randomly attached to layered titania nanosheets.

Keywords: EXFOLIATION; INTERCALATION; MESOPOROUS MATERIAL; N2 ADSORPTION-DESORPTION ISOTHERM; NANOHYBRID; NANOPARTICLE; NANOSHEET; REASSEMBLY; SOL-GEL METHOD

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2010.1540

Publication date: 2010-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more