Skip to main content

Extrusion of Spark Plasma Sintered Aluminum-Carbon Nanotube Composites at Various Sintering Temperatures

Buy Article:

$105.00 plus tax (Refund Policy)

The combined processes of spark plasma sintering and hot extrusion were used to fabricate a multi-walled carbon nanotube (MWCNT) reinforced aluminum (Al) matrix composite. The structural defects of carbon nanotubes (CNT) at various sintering temperatures were investigated by Raman spectroscopy. A small amount of Al liquid phase was generated and it reacted with disordered CNTs, even during the solid-state spark plasma sintering process. The influence of Al carbides generated by the reaction between Al and disordered CNTs is discussed from a microstructural viewpoint and in relation to tensile strength. We conclude that structurally controlled CNTs could potentially be attractive for metal matrix applications, and could significantly improve the mechanical properties of Al-CNT composites.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2009-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more