Skip to main content

A Study of Energy Dissipation in Exfoliated Polyurethane/Organoclay Nanocomposites

Buy Article:

$105.00 plus tax (Refund Policy)

Exfoliated polyurethane (PU)/organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The effect of organoclay on energy dissipation in the exfoliated PU/organoclay nanocomposites during cyclic deformation at strain ratios of 50%, 100% and 200% was investigated experimentally and by molecular dynamics (MD) simulation. The addition of organoclay resulted in extra energy loss in the PU nanocomposites and greater energy dissipation in the exfoliated nanocomposites compared with intercalated ones containing the same percentage of organoclay. With the help of MD simulation, understanding of the energy dissipation arising from the addition of organoclay to the exfoliated PU nanocomposites is now clearer. The nanoplatelets exhibited reversible orientation behaviour at a low strain ratio of 50%, suggesting that the additional energy dissipation may be due to the frictional sliding at the interface between polymer chains and the surfaces of organoclay layers. However, when the sample was subjected to large strain, the orientation of nanoplatelets revealed more irreversible behaviour indicating that the extra energy dissipation is due to both the frictional sliding at the interface and the orientation of the nanoplatelets. The additional energy dissipation was also influenced by the strength of interactions between polymer chains and clay platelets: the stronger interactions, the greater the energy dissipation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2009-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more