Skip to main content

Purification and Functionalization of Carbon Nanotubes by Classical and Advanced Oxidation Processes

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Advanced oxidation technologies (AOT) were applied for the production of accurately controlled oxidized multi-walled carbon nanotubes. Fenton process is effective to get carboxylic (–COO or –COOH) and OH groups on the surface of carbon nanotubes while Photofenton and UV/H2O2 processes mostly produce OH groups on surface of multiwalled carbon nanotubes (MWCNT). All of them preserve the structure of MWCNT allowing to achieve accurately controlled oxidized MWCNT. Fourier transform infrared spectroscopy (FTIR) and thermogravimetical analysis (TGA) show that the acid treatment is the more efficient technique to generate COOH groups on MWCNT surface. However, this chemical technique generates strong damages on the MWCNT structure, as demonstrated by TGA, field emission scanning electron microscopy and transmission electron microscopy results.

Keywords: CARBON NANOTUBES; CONTROLLED OXIDATION; FENTON; PHOTO-FENTON

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2009.1563

Publication date: 2009-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more