Skip to main content

Rapid Synthesis of Ordered Manganite Nanotubes by Microwave Irradiation in Alumina Templates

Buy Article:

$113.00 plus tax (Refund Policy)


Highly ordered La2/3Ca1/3MnO3 nanotube arrays were successfully synthesized by a simple and rapid process, combining nanoporous alumina template-assisted synthesis with microwave irradiation. The method offers a quick hands-on route to produce manganite bulk sample and nanotube arrays at relative low-temperatures. We obtain thin wall nanotubes of uniform diameter of 80 nm. The growth mechanism of nanotubes is briefly discussed. Magnetic measurements indicate that the ferromagnetic transition temperature TC of the nanotubes is depleted with respect to its bulk counterpart possibly due to the geometric confinement imposed by the thin wall of the nanotubes.


Document Type: Research Article


Publication date: October 1, 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more