If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Facile Preparation of Superparamagnetic Fe3O4/Poly(St-co-MPS)/SiO2 Composite Particles with High Magnetization by Introduction of Silanol Groups

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Fe3O4/poly(St-co-MPS) particles were prepared by encapsulation of Fe3O4 nanoparticles into copolymers of styrene (St) and 3-trimethoxysilylpropylmethacrylate (MPS) (poly(St-co-MPS)) prepared by miniemulsion copolymerization. It is found that the structure of the Fe3O4/poly(St-co-MPS)/SiO2 composite particles prepared by direct silica deposition on surface of the Fe3O4/poly(St-co-MPS) particles is dependent on the volume fraction of MPS used in the copolymerization. It is identified that the surface of the Fe3O4/poly(St-co-MPS) particles becomes more negatively charged with increased volume fraction of MPS used in the copolymerization, attributed to the increased amount of the silanol groups on the particles surface. Introduction of silanol groups on the particle surface is effective to improve the dispersibility of the Fe3O4/poly(St-co-MPS) particles and their compatibility with silica, allowing the facile preparation of Fe3O4/poly(St-co-MPS)/SiO2 composite particles with defined core–shell structure. The as-prepared Fe3O4/poly(St-co-MPS)/SiO2 composite particles show high magnetization, for example, saturation magnetization of the particles with average size of 140 nm and 6 nm silica shell is as high as 45 emu/g at 300 K.

Keywords: FE3O4/POLY(ST-CO-MPS)/SIO2; HIGH MAGNETIZATION; SILANOL; STOBER METHOD; SUPERPARAMAGNETIC

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2009.1240

Publication date: October 1, 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more