Skip to main content

The Durability Dependence of Pt/CNT Electrocatalysts on the Nanostructures of Carbon Nanotubes: Hollow- and Bamboo-CNTs

Buy Article:

$113.00 plus tax (Refund Policy)


The electrochemical durability of Pt/CNT with hollow- and bamboo-structured carbon nanotubes (H-CNT and B-CNT) as the support for PEM fuel cells was investigated. Both Pt/CNT electrocatalysts were degraded under cyclic voltammetry (CV, 0.6–1.1 V) accelerated degradation test method. Pt/CNT electrocatalysts were characterized with cyclic voltammograms, rotating disk electrodes, and TEM images. The changes in the electrochemical surface area of Pt and the activity toward oxygen reduction reaction (ORR) before and after the degradation indicate that Pt/B-CNT catalyst exhibited much higher durability than Pt/H-CNT. TEM images indicate that the sintering of Pt nanoparticles was much less for Pt/B-CNT. Pt/B-CNT also exhibited a little higher activity toward ORR than Pt/H-CNT. These are attributed to the specific bamboo-like nanostructures which provide more "bamboo-knot" defects and edge plane-like defects. Pt-support interaction was therefore enhanced and the durability and activity were improved.


Document Type: Research Article


Publication date: 2009-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more