Skip to main content

Multi-Luminescent Hybrid Gadolinium Oxide Nanoparticles as Potential Cell Labeling

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

This manuscript analyses the use of newly developed hybrid gadolinium oxide nanoparticles as cell-labeling tracers. The nanoparticles are core–shell particles composed of a core of gadolinium oxide of [2–4] nm and a protecting shell of polysiloxane [1–3nm] where different organic dyes (fluoresceine isothiocyanate (FITC) or rhodamine B isothiocyanate (RBITC)) are embedded. They are functionalized with poly(ethylene glycol)bis(carboxymethyl) to ensure their colloidal stability in biological buffers. These particles are potential multi-labeling tracers (magnetic and optical). In this paper, we show by optical imaging that they can be efficiently internalized in cells without cell alteration. The in-vitro uptake of the nanoparticles was followed in two cell lines (human fibroblasts and a human adenocarnima cell lines MCF7 cells). Nanoparticles distribution within cells was analysed by confocal analysis, and gadolinium concentration within cells was quantified by mass spectrometry (ICP-MS analysis). Nanoparticles uptake is found to be fast and efficient for both cell lines, with fluorescent labeling visible after 10 min of incubation whatever the nature of the fluorophore. The fluorescent intensity is mainly found as concentrated dots in the perinuclear region of the cells and decreases with the number of days in culture, but is still easily detectable after 3days in culture. No significant effect on cell growth was detected. Finally, we show in this study the protective effect of the polysiloxane layer: encapsulation of RBITC within the polysiloxane shell, leads to a better photostability of this low cost dye than Cy3 and even reach a level comparable to Alexa 595. With their high photostability and long-lasting contrast properties, these hybrid luminescent nanoparticles appears thus as a versatile solution to assess multiple cell fate both in in-vitro cell model as well as in-vivo.

Keywords: CELL INTERNALIZATION; CELL LABELING; CORE-SHELL; GADOLINIUM OXIDE; LUMINESCENT NANOPARTICLES; POLYSILOXANE

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2009.1237

Publication date: October 1, 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2009/00000009/00000010/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more