Skip to main content

Fire Retardant Effects of Polymer Nanocomposites

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Among the many and varied applications of nanotechnology, the dispersion of nanoscopic fillers to form polymer nanocomposites with improved fire behaviour illustrates the potential and diversity of nanoscience. Different polymers decompose in different ways and fire retardants act to inhibit the decomposition or flaming combustion processes. Polymer nanocomposites form barriers between the fuel and air, reducing the rate of burning, but beyond that there is little consistency in their effects. It is shown that the decomposition products of polypropylene are changed by the presence of nanoclay, although there is only a small influence on the mass loss rate. The rheological properties of molten polymer nanocomposites are radically different from those of virgin polymers, and these will profoundly affect the heat transfer through the material, resulting in a shorter time to ignition and lower peak in the heat release rate, typical of polymer nanocomposites. The dispersion of nanofillers within polymers is generally measured in the cold polymer, but since this does not reflect the condition at the time of ignition, it is proposed that temperature ramped rheological measurements are more appropriate indicators of dispersion. The influence of polymer nanocomposite formation on the yields of toxic products from fire is studied using the ISO 19700 steady state tube furnace, and it is found that under early stages of burning more carbon monoxide and organoirritants are formed, but under the more toxic under-ventilated conditions, less toxic products are formed.

Keywords: FIRE; FLAME; NANOCOMPOSITE; POLYMER; RETARDANT; TOXICITY

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2009.M80

Publication date: 2009-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more