Skip to main content

Immobilizing Biomolecules Near the Diffraction Limit

Buy Article:

$105.00 plus tax (Refund Policy)

Our group has previously shown that biomolecules containing disulfide bridges in close proximity to aromatic residues can be immobilized, through covalent bonds, onto thiol derivatized surfaces upon UV excitation of the aromatic residue(s). We have also previously shown that our new technology can be used to print arrays of biomolecules and to immobilize biomolecules according to any specific pattern on a planar substrates with micrometer scale resolution. In this paper we show that we can immobilize proteins according to diffraction patterns of UV light. We also show that the feature size of the immobilized patterns can be as small as the diffraction limit for the excitation light, and that the immobilized patterns correspond to the diffraction pattern used to generate it. The flexibility of this new technology will in principle make it possible to create any pattern of biomolecules onto a substrate, which can be generated by a UV diffraction pattern. Such patterns can have sub-micron feature sizes and could therefore be of great relevance for present and future nanotechnological applications.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2009-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more