Skip to main content

Measuring the Magnetization of Nano Ferro-Fluid with D.C Electromagnetic Application

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

A new electromagnetic measuring technology of smaller size, simple structure and high efficiency was proposed in this study. Based on the ferrohydrodynamics (FHD) theory with the absence of viscous effect, the device, independent to the geometry of electro-magnetism, was set up to determine the magnetization of ferrofluid containing magnetite microcrystals of 10∼100 nm size. To strengthen the magnetic intensity, a soft iron was placed across the solenoid of about 2,800 turns, and operated at a DC voltage of 10 V∼30 V. The magnetic intensity in this radial component had been found to be most active at this specific setting, which significantly influenced the hydrodynamics of the ferrofluid. With the rise of the liquid, caused by the action of the radial magnetic field, the permeability ratio of ferrofluid at about 1.32∼1.24 could be successfully estimated by the FHD Bernoulli equation. If compared with the experimental data of 1.27, given by Matsumoto Yushi-Seiyaka Co., the relative errors are no more than 5%.

Keywords: FERROHYDRODYNAMICS; PERMEABILITY RATIO

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2009.M48

Publication date: 2009-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more