Skip to main content

Particle Trajectories and Temperature Histories of TiO2 Nanoparticles Synthesized in Diffusion Flame Reactor

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The computational analysis was developed to illustrate the gas temperature and velocity profiles in the oxy-methane diffusion flame reactor during the formation of TiO2 nanoparticles and the collection of the TiO2 nanoparticles by filter. The computational simulation shows that the increase in gas temperature and velocity is significantly affected by the increase in CH4 flow rate. The particle trajectory was calculated by using the model, which concerns the effects of thermophoretic force and gas velocity on the particle movement. The particles starting from different initial positions in radial direction will move in different trajectories. The particles following different trajectories have different temperature histories and also residence times in the gas phase. As the particles start at the initial position of the reactor which is further away from the central axis, they spend longer time in the gas phase and deposit on the higher position of filter. For particles starting at the initial position of the reactor which is further than 0.5 cm from the central axis, they move to deposit on the pyrex tube instead of filter. As the CH4 flow rate increases, the particles move further from the central axis, but it takes a shorter time for the particles to deposit on the filter. The particles synthesized at a higher CH4 flow rate show significantly higher temperature history than those particles synthesized at a lower CH4 flow rate. The temperature histories of particles in diffusion flame reactor can be quite important information to control the properties of TiO2 nanoparticles.

Keywords: DIFFUSION FLAME REACTOR; NUMERICAL SIMULATION; PARTICLE TRAJECTORY; TEMPERATURE HISTORY; TIO2 NANOPARTICLE

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2009.M43

Publication date: July 1, 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2009/00000009/00000007/art00043
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more