Skip to main content

Multiscale Study of Hydrogen Diffusion and Clustering on Carbon Nanotube

Buy Article:

$105.00 plus tax (Refund Policy)

In this paper we report the results of a multiscale study of hydrogen clusterization at the surface of (10,0) carbon nanotube. For this purpose, a systematic study of the binding energies and migration barriers of hydrogen adatom and various close adatom pairs of has been undertaken using density-functional theory approach. The interaction between hydrogen atoms on the surface of nanotube is shown to be long ranged and anisotropic. On applying the obtained potential energy surfaces for lattice kinetic Monte Carlo simulations of chemisorbed hydrogen annealing, a noticeable influence of the annealing conditions on cluster sizes, shapes and relative populations has bean revealed, which opens a possibility for the control of hydrogen clusterization kinetics. The effect on carbon nanotube electronic structure from hydrogen dimers and trimers most frequently met in lattice kinetic Monte Carlo simulations is discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2009-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more