Skip to main content

Growth of Nano Size Grains in CuInSe2 Thin Films Using E-Beam Deposition Technique

Buy Article:

$105.00 plus tax (Refund Policy)

Crystalline defects, such as the density of voids, grain boundaries and dislocations in copper based ternary/multinary semiconducting compounds/alloys such as CuInSe2 and CuIn x Ga1−x Se2 absorber layers depend on the fabrication conditions and determine to a large extent the efficiency of photo-voltaic devices. The material properties, however, can be improved significantly by using the optimized deposition conditions. This paper reports the results of studies carried out on growth and characterisation of CuInSe2 thin films. Coatings of thickness less than one micron were grown using an electron-beam evaporation technique onto glass slides at various substrate temperatures. The structure, surface morphology and electro-optical properties of the films have been investigated using a number of analytical techniques. The effects of the substrate temperature deposition rate, deposition time and type of the target material (a loose powder and single crystal) on the properties of the films have also been examined. In the as-grown films, X-ray diffraction (XRD) analysis revealed a strong preferred orientation with the 〈112〉 plane parallel to the substrate. Results from energy dispersive analysis with X-rays (EDAX) indicated a deficiency of selenium and/or copper in some of the samples, otherwise the composition was comparable with the starting polycrystalline material. Scanning electron micrographs showed almost no grains in the films prepared at deposition temperature less than 150 °C with small deposition rate of 10 Å/sec. However, a nano-scale grain structure (approximately 60–80 nm) was observed in the films grown at elevated temperatures (≥200 °C) with larger deposition rate of 20 Å/sec. The values of the crystallite size calculated from the profile of the main 〈112〉 peak using Scherrer formula were in the range of 10–20 nm. Electrical measurements revealed both n- and p-type conductivities with surface resistivity values in the range of 10−1 to 104 Ω-cm.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2009-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more