If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Wear Mechanism of Nanocrystalline Metals

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Our tribological experiments on nanocrystalline (nc) Ni (grain size down to ∼10 nm) showed significant reductions in both, the coefficient of friction and wear rate compared to its microcrystalline (mc) counterpart. A consistent relationship was found between grain size, hardness and tribological behavior. In the present study, the wear mechanism was investigated by conducting transmission electron microscopy (TEM) and nanoindentation experiments in the wear track region. TEM observations revealed that sliding wear developed two entirely different substructures in mc and nc Ni. Under the extensive plastic deformation, surface nanocrystallization occurred in the former and deformation-induced grain growth in the latter. These changes were consistent with the nanoindentation measurements from the wear track. Hardness in the mc Ni was increased due to work hardening/surface nanocrystallization. On the contrary, hardness remained at similar or slightly lower levels for nc Ni probably due to grain coarsening from the activation of grain boundary-related modes of deformation. The two different deformation mechanisms are consistent with the observed differences in frictional behavior and wear resistance that involves wear/fatigue for mc Ni and fine scale abrasion for nc Ni.

Keywords: NANOCRYSTALLINE; NANOINDENTATION; NICKEL; TRANSMISSION ELECTRON MICROSCOPY; WEAR

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2009.M37

Publication date: July 1, 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more