Skip to main content

Nanocrystalline Silver Supported on Activated Carbon Matrix from Hydrosol: Antibacterial Mechanism Under Prolonged Incubation Conditions

Buy Article:

$105.00 plus tax (Refund Policy)

Nanocrystalline silver-supported activated carbon (AC) was fabricated by directly loading silver nanoparticles into the porous AC matrix from a preformed nanosilver hydrosol. Silver-AC composites were also synthesized using a conventional thermal impregnation method. While XRD calculation indicated the presence of Ag crystallites in nanometer range, silver nanoparticle hydrosol-treated AC having the finest crystallite size CS (<14.4 nm), SEM images clearly revealed that Ag crystals coalesced significantly with increasing temperature resulting in much larger particle size in thermally impregnated silver-AC composities. To clarify the antibacterial mechanism of silver nanoparticles impregnated into AC under prolonged incubation conditions the antibacterial activity was investigated against Gram-negative Escherichia coli. The kinetics of bacterial inactivation, in presence of hydroxyl radical (OH) scavengers, and superoxide anion radical (O2) inducer suggest the contribution of the reactive oxygen species (ROS) to antibacterial effect. However, these ROS scavengers did not show any inhibition of bactericidal activity after ∼1 h, suggesting that generated ROS are responsible for E. coli inactivation only during the initial 1 h of the incubation time. This study clearly indicates the plausible implication of eluted Ag+ as major lethal species responsible for the E. coli inactivation over extended process time. The antibacterial process was found to be highly promoted at higher temperature which was ascribed to the enhanced ROS formation and Ag+ elution at higher temperature. SEM images revealed considerable differences in the morphology of E. coli cells contacting with the virgin AC and that contacting with silver-supported AC. The strong antibacterial ability of formaldehyde-modified silver-supported AC further provided the indirect evidences for catalytic oxidation by ROS, and for the synergistic antibacterial effects of nanocrystalline silver and adsorbed formaldehyde. Comparison of the antibacterial activities of the silver-supported materials prepared by silver colloid deposition and by conventional thermal impregnation technique indicates that former is more efficient in controlling microorganism.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2009-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more