Skip to main content

Single-Crystal Growth of Nickel Nanowires: Influence of Deposition Conditions on Structural and Magnetic Properties

Buy Article:

$113.00 plus tax (Refund Policy)


This paper examines the influence of electrodeposition potential, pore size, pH, composition, and temperature of the electrolytic bath on the structure of nickel nanowires arrays electrodeposited into anodic alumina oxide porous membranes. Scanning electron microscopy, X-ray diffraction, and transmission electron microscopy analysis were employed to characterize the structural and morphological properties of the nanowires. Results show that the electrodeposition potential controls the growth of nickel nanowires along some preferential crystallographic planes. At −0.90 V (vs. Ag/AgCl) single crystalline nanowires with a strong (111) orientation were obtained. High temperatures and a moderately acid pH solution contributed to improve the single crystalline character of nanowires. The presence of chloride ions produced polycrystalline nanowires at low temperature and single crystalline nanowires at high temperature. The influence of the electrodeposition potential in their magnetic anisotropies is also reported.


Document Type: Research Article


Publication date: March 1, 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more