Skip to main content

Consolidation of Carbon Nanofiber/Copper Composites by Hot-Pressing and Spark Plasma Sintering: A Comparative Study

Buy Article:

$105.00 plus tax (Refund Policy)

Vapour grown carbon nanofibers have been incorporated into a copper matrix at 20 and 40 volume fractions. The manufacturing route involves the dispersion of the carbon nanofibers and their subsequent coating by electroless plating with copper. The consolidation of the composite powders was performed by two different techniques: hot-pressing and spark plasma sintering. A comparative study of the two processes is reported, in terms of microstructure, dispersion and porosity. The consolidation by hot-pressing (at 900 °C, 30 MPa) led to poreless composites (relative density > 96%) and to a homogeneous microstructure. On the other hand, spark plasma sintering (at 400 °C, 75 MPa) led to lower densification (relative density < 96%) and heterogeneous microstructure.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2009-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more