Skip to main content

Metalized Nanotube Tips Improve Through Thickness Thermal Conductivity in Adhesive Joints

Buy Article:

$105.00 plus tax (Refund Policy)

The through-thickness thermal conductivity in conventional adhesive joints (of ∼0.3 W/m-K) fails to meet the thermal load transfer requirement in numerous applications to enable lean manufacturing and improve system reliability to thermal load. Carbon nanotubes are known to possess extremely high thermal conductivity along the longitudinal axis. According to molecular dynamics simulations, the value can be as high as 3500 W/m-K at room temperature for multi-walled carbon nanotubes (MWCNT). Meanwhile, the transverse thermal conductivity perpendicular to the longitudinal axis of the MWCNTs is known to be relatively low, approximately 10–15 W/m-K. Existing studies of mixing the MWCNTs in polymers for adhesive joints only achieved minimal enhancement in the thermal conductivity and failed to satisfy the thermal property requirement for the adhesive joints. In order to properly utilize the superior axial thermal conductivity of the MWCNTs, vertically aligned MWCNTs have been used in this study and incorporated in the adhesive joint configuration. Analytical parametric study was conducted to identify critical parameters that affect the overall thermal conductivity of the joint and to provide guidelines for the process development. The process development involved growing the vertically aligned MWCNTs on silicon wafers. The aligned nanotube array was partially infused with epoxy adhesive. Selective reactive ion etching of the epoxy revealed the nanotube tips. In order to reduce the impedance mismatch and phonon scattering at the interface between the nanotube tips and the adherends, gold was thermally evaporated on the nanotube tips. The measured thermal conductivity of the adhesive joint device incorporating the MWCNTs was 262 W/m-K, which is significantly larger compared to that of less than 1 W/m-K without the MWCNTs.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2009-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more