Skip to main content

Electrochemical Performance of Nanocrystalline SnO2-Carbon Nanotube Composites as Anode in Lithium-Ion Cells

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

SnO2-carbon nanotube composites were prepared by chemical treatment of tin chloride salt mixed with carbon nanotubes, followed by heat-treatment at high temperature. Nanosize SnO2 particles were formed and embedded in a carbon nanotube matrix. TEM and HRTEM observation confirmed the homogeneous distribution of SnO2 nanoparticles. SnO2-carbon nanotube anodes demonstrated high lithium storage capacity and stable cyclability, which could be attributed to the nanosize SnO2 crystals and the formation of carbon nanotube networks in the electrode.

Keywords: LITHIUM-ION BATTERY; NANOCRYSTAL; SNO2-CARBON NANOTUBE COMPOSITE

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2009.C182

Publication date: 2009-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more