Skip to main content

Probability Current and Antiresonances of Particle Tunneling Through Biased Heterostructures

Buy Article:

$113.00 plus tax (Refund Policy)


A flow of independent particles, traveling across a biased heterostructure, is shown to produce an essentially constant probability current density in the gate. Based on this observation, a phenomenological boundary condition was proposed for evaluating the eigenfunctions of the Hamiltonian and for the computing the gate probability current density in a three-layer metal-oxide-semiconductor (MOS) heterostructure. Sharp antiresonances are obtained in the probability current, which are interpreted as quasi-bound states in the heterostructure. Results show that the antiresonant states should contribute the least to the gate current as the particles are strongly localized behind the interfacial barrier. The main contribution to the gate current of the MOS structure should come from the states between the antiresonances which are always supplied with particles from the bulk.


Document Type: Research Article


Publication date: February 1, 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more