Skip to main content

Growth, Characterization and Technological Applications of Semiconductor SnO2 Nanotubes and In2O3 Nanowires

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Tin dioxide nanotubes (200 nm in diameter) were synthesised by the sol–gel template method. The gas sensitivity of SnO2 nanotubes has been investigated. Due to the small grain size and large amount of grain boundary, SnO2 nanotubes demonstrated good sensitivity in sensing ethanol gas and had an ability to detect ammonia gas without any doping or surface modification. In2O3 semiconductor nanowires were synthesized efficiently by the chemical vapor deposition method through carbon thermal reduction. The diameter, length and morphologies of In2O3 nanowires can be varied by controlling the synthetic conditions. The In2O3 nanowires were characterised by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HRTEM). The application of In2O3 nanowires for gas sensors was tested.

Keywords: GAS SENSOR; IN2O3 NANOWIRES; SNO2 NANOTUBES

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2009.C106

Publication date: 2009-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more