Skip to main content

Fabrication of Versatile 3-D Ternary Nanostructures via Gas-Mediated Metal Evaporation

Buy Article:

$105.00 plus tax (Refund Policy)

By combining nanosphere lithography (NSL) with metal evaporation at two different chamber pressures, ternary metallic nanostructures with 3D topography were fabricated and characterized by field emission gun scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM). The nanostructures consist of 340 nm silicon patches surrounded by a chromium mesh of varying height and gold triangular pillars with a height of 40 nm and a diameter of about 200 nm. While NSL was applied due to its ease of use, evaporation at different chamber pressures can be combined with any kind of template mask comprising convex shape to yield novel kinds of ternary nanostructures analogous to the ones presented here. The method shows to be more versatile than plasma-based deposition techniques due to avoidance of substrate charging effects and a freely adjustable chamber pressure.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2008-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more