Skip to main content

Silica Encapsulated CdS Tabular Nanocomposites via a Template Directed Agglomeration Mechanism

Buy Article:

$113.00 plus tax (Refund Policy)


Silica coated CdS tabular nanocomposites were synthesized through precipitation of CdS nanoparticles in octylamine/water bilayer system followed by in situ hydrolysis of tetraethoxylsilicate (TEOS) precursor. Face diameter of the nanoplatelets was in the range of 50∼250 nm with a variable thickness (3 to 25 nm) dictated by octylamine content or R ratio ([water]/[octylamine]). A uniform SiO2 outer shell of about 15 nm was observed regardless of the size of the high aspect ratio CdS nanoplatelets, which appeared to be agglomerated primarily owing to the confined bilayer template. Morphology and microstructure of the CdS/SiO2 tabular nanocomposites were characterized using atomic force microscope (AFM) and high resolution transmission electron microscope (HRTEM). A noticeable enhancement in absorbance for the UV-vis spectra was observed due to the SiO2 coating layer. Growth mechanism of nanocomposite platelets and potential applications associated with this anisotropic nanocomposite are discussed.


Document Type: Research Article


Publication date: November 1, 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more