Skip to main content

Micro-Brillouin Study of the Eigenvibrations of Single Isolated Polymer Nanospheres

Buy Article:

$113.00 plus tax (Refund Policy)

The localized acoustic modes of single isolated polymethyl methacrylate (PMMA) and polystyrene nanospheres have been studied by micro-Brillouin light scattering. The measured mode frequencies are analyzed on the basis of the Lamb theory formulated for a sphere under free boundary conditions. By measuring light scattering from single isolated particles, placed atop a piece of polished silicon wafer, the free-surface conditions are almost experimentally realized. The observed spectral peaks are attributed to localized eigenvibrations whose frequencies scale as inverse sphere diameter, in accordance with Lamb's theory. The Young's moduli and Poisson ratios of the polymer spheres studied have been evaluated from fits to the experimental data. We have demonstrated that micro-Brillouin spectroscopy is a powerful technique for probing the acoustic dynamics and mechanical properties of nanostructures.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: EIGENMODES; MECHANICAL PROPERTIES; MICRO-BRILLOUIN; POLYMER NANOSPHERES

Document Type: Research Article

Publication date: 2008-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more