Skip to main content

Synthesis of TiB2/Fe-Cr-Al Nanocomposite Powder

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

In this study, a route for synthesizing TiB2/Fe-Cr-Al nanocomposite is proposed via high energy ball milling by using directly coarse powders of TiB2, Fe, Cr and Al. Various compositions of these powder mixtures are milled up to 48 hrs to investigate the effect of composition on the crystalline refinement. The crystalline size is analyzed by an X-ray diffractometer for powder samples containing 30 to 100 wt% TiB2 (the rest of the powder consists of Fe-20 wt%Cr-5 wt%Al composition). The crystalline size after 48 hrs of ball milling decreases with increasing TiB2, and then again increases after reaching a minimum value of 18 nm at 70% TiB2. By transmission electron microscopic analysis, it is confirmed that particles of TiB2 are significantly reduced and finely dispersed in the Fe-Cr-Al matrix. The particle size of TiB2 is found around 20–25 nm, reinforced in the matrix. Considering the results of this study, the proposed mechanical milling route can be recommended as a promising way for fabrication of TiB2/Fe-Cr-Al nanocomposite powder.

Keywords: CRYSTALLINE SIZE REFINEMENT; NANOCOMPOSITE; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2008.1111

Publication date: 2008-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more