Skip to main content

Simulation Study of the Scaling Behavior of Top-Gated Carbon Nanotube Field Effect Transistors

Buy Article:

$105.00 plus tax (Refund Policy)

Device simulations on three-dimensional top-gated carbon nanotube field effect transistors (CNTFETs) have been performed by considering the quantum transport described in the framework of non-equilibrium Green's function method. Device characteristics of various top-gated CNTFETs, such as Schottky-barrier CNTFETs, CNTFETs with doped source and drain, and tunnel-FET-like CNTFETs, have been examined, focusing on their scaling behavior as the channel length is ultimately reduced down to a few nanometers. Comparison with coaxially-gated devices is also made.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2008-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more