Skip to main content

Single-Walled Carbon Nanotube Sensor Monitoring the Dissociation of Argon Gas

Buy Article:

$105.00 plus tax (Refund Policy)

Monitoring of argon gas dissociation was demonstrated using a matted sheet of single-walled carbon nanotubes (SWNTs), prepared by alternating current dielectrophoresis. The conductance of the SWNT network increased upon exposure to dissociated byproducts induced by corona discharge (CD), and the sensor signal was recovered rapidly by purging with the pure argon. Similar experiments on argon plasma were also carried out to investigate the applicability of the SWNT sensor in the monitoring of plasma-induced dissociation. The transduction mechanisms in both CD activity and plasma were analyzed using Raman spectroscopy. The results show that the detection of argon dissociation generated inside the reaction zone is possible using a miniaturized SWNT sensor.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2008-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more