Skip to main content

Physical Properties of Thin PVDF/MWNT (Multi-Walled Carbon Nanotube) Composite Films by Melt Blending

Buy Article:

$113.00 plus tax (Refund Policy)


Poly(vinylidene fluoride)(PVDF)/Multi-walled carbon nanotube (MWNT) composites were melt blended using internal mixer. The relationships between structures and physical properties of thin PVDF/MWNT composite films were studied. With increasing the content of MWNT, the size of spherulites in PVDF decreased. MWNT was used as a nucleating agent. The incorporation of MWNT produced a polar -form crystal structure of PVDF. The permittivities of thin PVDF/MWNT composite films were increased with increasing the MWNT content. The percolation level in electrical conductivity occurred between 2 and 2.5 wt%. The critical conductivity saturation point for the electrical conductivity in PVDF was confirmed. Similar tendency was also observed in thermal conductivity.


Document Type: Research Article


Publication date: September 1, 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more