Skip to main content

Thermal Stability of Cu and Cu2O Nanoparticles in a Polyimide Film

Buy Article:

$113.00 plus tax (Refund Policy)


Nanoparticles of Cu or Cu oxide dispersed in a polyimide (PI) film were fabricated by reaction of polyamic acid with a thin Cu film during imidization. In this paper, the thermal stability of the Cu or Cu oxide nanoparticles was investigated under various atmospheres. The PI/nanoparticle composites were heat-treated at 140 °C and 250 °C in air, N2, Ar, and 5% H2 atmospheres. Nanoparticles in the PI film were characterized by UV-VIS spectroscopy and transmission electron microscopy. The optical absorption peaks originating from Cu or Cu2O nanoparticles were changed by heat-treatment in different atmospheres. When Cu nanoparticles were oxidized by heat-treatment in air, the surface plasmon resonance (SPR) peak originating from the Cu nanoparticles disappeared. The quantum confined absorption peak of Cu2O was not affected by heat-treatment in N2 or Ar. Cu2O nanoparticles were reduced by heat-treatment at 250 °C in 5% H2 atmosphere and a new SPR peak appeared. Our results show that Cu nanoparticles are easily oxidized and highly dense Cu nanoparticles can be formed by reducing Cu2O nanoparticles.


Document Type: Research Article


Publication date: September 1, 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more