Skip to main content

Gas-Phase Formation of Self-Assembled Monolayers on MgO for Protection Against Hydration

Buy Article:

$113.00 plus tax (Refund Policy)


The gas-phase adsorption of octyltrichlorosilane onto MgO produces self-assembled monolayers that can provide protection against hydration of the underlying MgO surfaces. MgO thin film has attracted attention for application as a protecting layer of alternating current plasma display panel. On exposure to air, the clean MgO surface interacts with water and quickly hydrates to Mg(OH)2, which reduces the secondary electron emission yield. The gas-phase deposition of octyltrichlorosilane on the clean MgO has produced self-assembled monolayers because of high reactivity of the MgO surface. The ultra-thin organic layer of the octylsiloxane can provide significant protection against hydration to the MgO surface, and improves secondary electron emission yield for the MgO samples. The secondary electron emission coefficient for the monolayer-coated MgO sample is about 25% higher than that for the clean MgO after 24 hr exposing to air.


Document Type: Research Article


Publication date: 2008-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more