Skip to main content

Controlled Growth of Iron Oxide Nanoparticles in the Aqueous Microdroplets

Buy Article:

$113.00 plus tax (Refund Policy)

Magnetite nanoparticles were synthesized by chemical coprecipitation of ferric and ferrous aqueous solutions via regulation of the microenvironment at ambient conditions. Nanocrystals having an average diameter of 6 to 12 nm were obtained by picoliter droplets, whereas only 9 nm diameter nanocrystals were prepared by microliter droplets. The size of the nanocrystals was controlled by a precise balance of reactions of hydroxide ions with positive ions at the surface layer and inner layers of the droplets. The crystal structure and average size were analyzed by X-ray diffraction pattern and transmission electron microscope images. The field dependence and temperature dependence on magnetization measured by a superconducting quantum interference device demonstrate that the as-synthesized particles are superparamagnetic at room temperature and have a size-dependent magnetic property. The anisotropy constant calculated by the blocking temperature and particle size was found to decrease with increasing particle size.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2008-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more